Evidence for Intracellular and Extracellular Dimethylsulfoniopropionate (DMSP) Lyases and DMSP Uptake Sites in Two Species of Marine Bacteria.
نویسندگان
چکیده
The kinetics of dimethylsulfoniopropionate (DMSP) uptake and dimethylsulfide (DMS) production from DMSP in two bacterial species, Alcaligenes sp. strain M3A, an isolate from estuarine surface sediments, and Pseudomonas doudoroffii, from seawater, were investigated. In Alcaligenes cells induced for DMSP lyase (DL) activity, DMS production occurred without DMSP uptake. In DL-induced suspensions of P. doudoroffii, uptake of DMSP preceded the production of DMS, indicating an intracellular location of DL; intracellular DMSP levels reached ca. 7 mM. DMSP uptake rates in noninduced cells showed saturation at three concentrations (K(inft) [transport] values, 3.4, 127, and 500 (mu)M). In DL-induced cells of P. doudoroffii, DMSP uptake rates increased ca. threefold (V(infmax), 0.022 versus 0.065 (mu)mol of DMSP taken up min(sup-1) mg of cell protein(sup-1)), suggesting that the uptake binding proteins were inducible. DMSP uptake and DL activity in P. doudoroffii were both inhibited by CN(sup-), 2,4-dinitrophenol, and membrane-impermeable thiol-binding reagents, further indicating active uptake of DMSP by cell surface components. The respiratory inhibitors had limited or no effect on DL activity by the Alcaligenes sp. Of the structural analogs of DMSP tested for their effect on DMSP metabolism, glycine betaine (GBT), but not methyl-3-mercaptopropionic acid (MMPA), inhibited DMSP uptake by P. doudoroffii, suggesting that GBT shares a binding protein with DMSP and that MMPA is taken up at a separate site. Two models of DMSP uptake, induction, and DL location found in marine bacteria are presented.
منابع مشابه
Use of microautoradiography combined with fluorescence in situ hybridization to determine dimethylsulfoniopropionate incorporation by marine bacterioplankton taxa.
The fraction of planktonic heterotrophic bacteria capable of incorporating dissolved dimethylsulfoniopropionate (DMSP) and leucine was determined at two coastal sites by microautoradioagraphy (AU). In Gulf of Mexico seawater microcosm experiments, the proportion of prokaryotes that incorporated sulfur from [(35)S]DMSP ranged between 27 and 51% of 4',6-diamidino-2-phenylindole (DAPI)-positive ce...
متن کاملDIMETHYLSULFONIOPROPIONATE ( DMSP ) AND DMSP - LYASE IN CNIDARIAN - ALGAL SYMBIOSES By Denise
Title of Dissertation: DIMETHYSULFONIOPROPIONATE (DMSP) AND DMSP-LYASE IN CNIDARIAN ALGAL SYMBIOSES. Denise Marie Yost, Doctor of Philosophy, 2010 Directed By: Dr. Carys L. Mitchelmore, University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory Dimethylsulfoniopropionate (DMSP) is a multifaceted sulfur compound produced by several groups of marine phytoplankton, m...
متن کاملThe Ruegeria pomeroyi acuI Gene Has a Role in DMSP Catabolism and Resembles yhdH of E. coli and Other Bacteria in Conferring Resistance to Acrylate
The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH(-) mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homol...
متن کاملChemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web.
Phytoplankton-produced dimethylsulfoniopropionate (DMSP) provides underwater and atmospheric foraging cues for several species of marine invertebrates, fish, birds, and mammals. However, its role in the chemical ecology of marine planktonic microbes is largely unknown, and there is evidence for contradictory functions. By using microfluidics and image analysis of swimming behavior, we observed ...
متن کاملDddY is a bacterial dimethylsulfoniopropionate lyase representing a new cupin enzyme superfamily with unknown primary function
Dimethylsulfide (DMS) is released at rates of >107 tons annually and plays a key role in the oceanic sulfur cycle and ecology. Marine bacteria, algae, and possibly other organisms, release DMS via cleavage of dimethylsulfoniopropionate (DMSP). Different genes encoding proteins with DMSP lyase activity are known belonging to different superfamilies and exhibiting highly variable levels of DMSP l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 63 8 شماره
صفحات -
تاریخ انتشار 1997